

A Practical Application of Artificial Intelligence in Traffic Responsive Signal Control

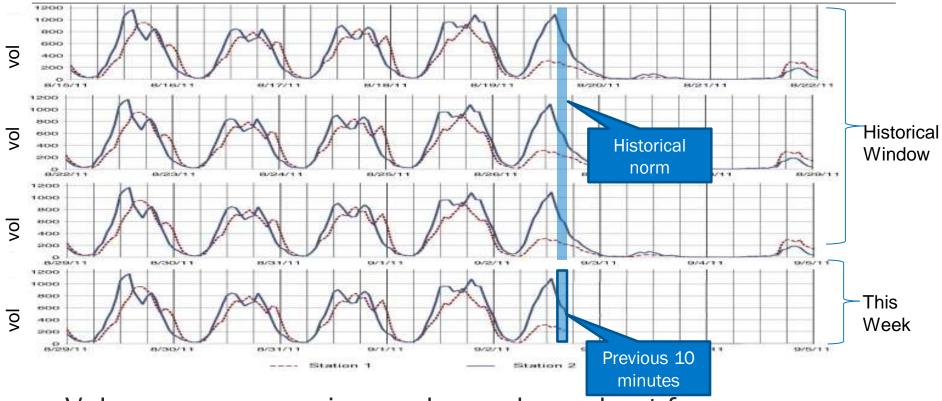
Mark Conrad, P. Eng., Engineering Manager, ITS, Parsons Ehsan Bagheri, Ph.D., ITS Specialist, Parsons

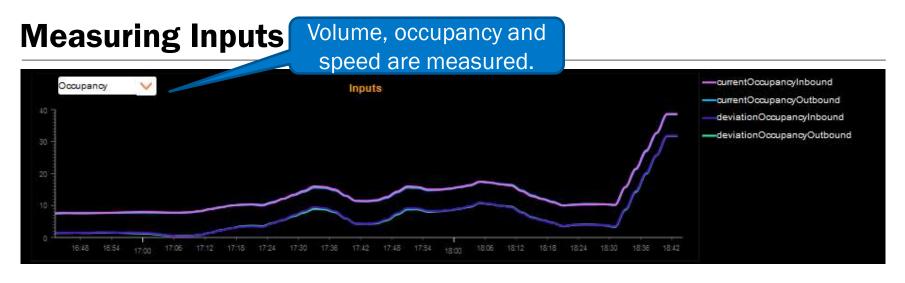

Presentation prepared for the 'Uber-Intelligent Transportation Systems' session of the 2018 ITS Canada ACGM, Niagara Falls, ON

- Review a representative responsive control area
- Explain how baseline reference traffic conditions are maintained to inform responsive decision making
- Explain how simulated reasoning (AI) is being applied to select traffic responsive signal timing patterns
- Describe how system stability and feedback control is achieved
- Present a case study illustrating a typical response scenario
- Discuss current and planned deployments

Responsive Control Area

- Halifax, Nova Scotia
- 7 Signals on Joseph Howe Drive between Springvale Ave and Dutch Village Rd
- "Coordination corridor" with high volumes, several major intersections and ramp signals
- Connects alternate routes entering and leaving the downtown area
- Therefore, traffic is heavily affected by incidents on the adjoining highways and crossing arterials


Sensor Stations


- Four strategically-placed stations; two in each direction
- Placed to capture flows exiting the intersection, upstream of the normal back of queue
- Microwave technology

Establishing Baseline Traffic Conditions

- Volumes, occupancies, and speeds are kept for a configurable historical window (set to 12 weeks) representing baseline conditions
- Current conditions are compared to the baseline to identify non-recurrent congestion

- Each intersection and assesses its own measured traffic conditions and their deviation from the historical norm
- Large positive deviations between the current volume and occupancy and the historical baseline indicate non-recurrent congestion
- If non-recurrent congestion is identified, actual volumes and occupancies are then used to determine the pattern to run
- Groups of intersections will respond in unison to the extent that they share stations (allows for flexible grouping)

Response Plan Generation Using Expert Rules

■ Intelligent Response Configuration - 417 ?->				
General Inputs		uts		
Weight Adjustment	5			
Rule Block	Rule ID	Rule	Weight	
congestion	0	if (deviationOccupancyInbound is not positive and deviationVolumeInbound is not positive) and (deviationOccupancyOutbound is not positive and deviationVolumeOutbound is not positive) then pattern is standbyPattern with 0.6	0.600	
congestion	1	if currentOccupancyInbound is not high and currentOccupancyOutbound is not high then pattern is standbyPattern with 0.8	0.600	
congestion	2	if currentOccupancyInbound is high then pattern is inboundCongest oPattern with 0.5	0.500	
congestion	3	if currentOccupand thound is high then pattern is outboundCongestion ith 0.5	0.500	
		to s	ay be adjusted uit agency jectives.	

- Capture the relevant traffic engineering knowledge
- First rule maintains the local TOD pattern if there is no positive deviation from the historical norm
- Second rule maintains local TOD pattern if neither volume nor occupancy indicate congestion
- Remaining rules select the pattern according to the conditions

Expert Rule Inputs

Intelligent Response Configurat	ion - 417		?->
General Inputs Rules Outputs			
Parameter	Lower bound	Upper bound	
currentOccupancyInbound	0.000	50.000	
currentOccupancyOutbound	0.000	50.000	
currentSpeedInbound	0.000	100.000	
currentSpeedOutbound	0.000	100.000	
currentVolumeInbound	0.000	1000.000	
currentVolumeOutbound	0.000	1000.000	
deviationOccupancyInbound	0.000	30.000	
deviationOccupancyOutbound	0.000	30.000	
deviationVolumeInbound	0.000	400.000	
deviationVolumeOutbound	0.000	400.000	
timeToEvent1	-600.000	F00.000	
timeToEvent2	-600.000	00.000	
timeToEvent3	-600.000	00.000	

Ranges must be configured according to the expected range of measurements.

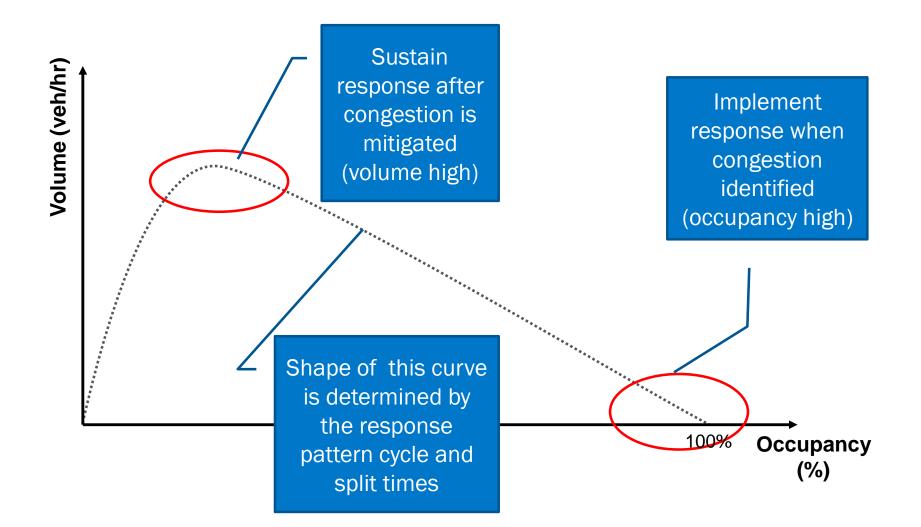
Ranges are used to convert numeric measurements (in % or vph) to degrees of membership in a class (positive, high, etc.)

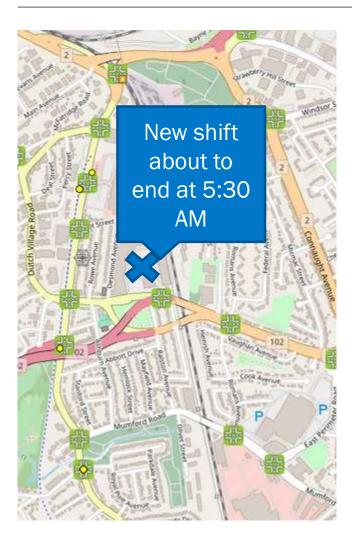
 This form is required to be able to evaluate the rules

Expert Rule Outputs

Intelligent Response Configuration - 417 ? − ×				
General Inputs Rules Outputs				
Output Term Adjustn	nents			
Parameter	Term	Value		
pattern	balancedCongestionPattern	2.000		
pattern	event1Pattern	4.000		
pattern	event2Pattern	5.000		
pattern	event3Pattern	6.000		
pattern	inboundCongestionPattern	1.000		
pattern	outboundCongestionPattern	3.000		
pattern	standbyPattern	0.000		
	according	to timing patterns to timing patterns to the controller		
		unit.		

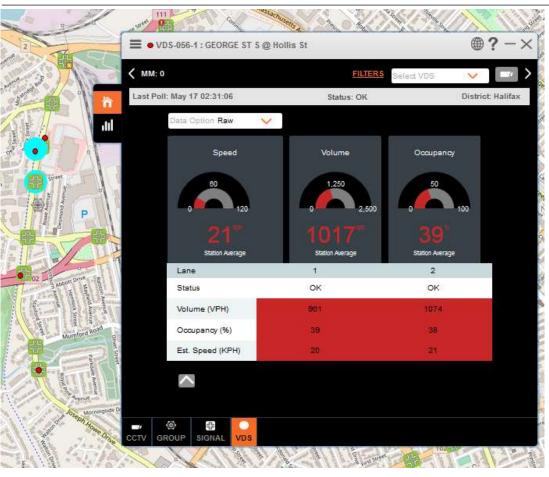
 Values are used to convert rule outcomes (e.g., outboundCongesti onPattern) into pattern numbers to be applied at the intersection


Explainable Decisions


 A complete history of all responsive pattern decisions is maintained, along with the corresponding input and rule activations that went into each decision

- Basic stability is achieved through smoothing of sensor data, applying a persistence threshold before activating a pattern, and enforcing a minimum activation time once a pattern is activated
- If effective, activating a responsive pattern will reduce congestion in the applicable control area
- This reduction in congestion could feed back into the system through the sensors and cause the pattern to be removed too early only to be reactivated again once congestion returns
- This problem is addressed in our rule base by responding to both high volumes and high occupancies

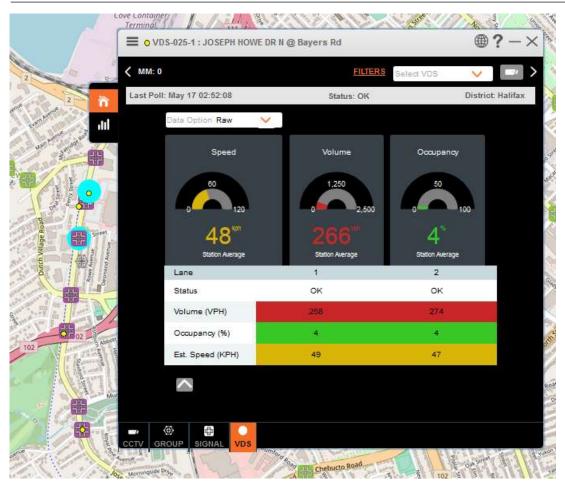
Achieving Feedback Control using Volume and Occupancy


Case Study

- A nearby successful business east of the control area adds a new shift resulting in a short-term heavy demand on Joseph Howe Drive in both directions when the shift ends in the early morning
- Initially, intersections are running free with sensors detecting no congestion

Start of Congestion

 Within a short time, congestion begins to build at the sensors within the control area



Start of Response

		and the second s	and a start	
and an and a second	Intelligent Response Control Diagra	n - 091		? – ×
	Range: Mode: Live 2 Real-World Inference Engine	Hours Set Range		Show Markers
an and an	Occupancy 🗸 🗸	Inputs	currentOccupancy	
	40 mmmmut		-deviationOccupan -deviationOccupan	ncyInbound
	29			
	10			
102	-10			
the second second	03.42 03.48 03.54 04.00 04.06 04.1	2 04:18 04:24 04:30 04:38 04:42 04:48 04:54 _{06:00} 05:06 0		
	Pattern	Outputs	pattern	
Achburn				
Golf Club Person Pro-				
Mesteries				
Date Fairmount	0 03.42 03.48 03.54 04.00 04.06 04.12	04:18 04:24 04:30 04:36 04:42 04:48 04:54 05:00 05:06 05	5.12 05.18 05.24 05.30 05.36	

• Within 5 minutes, an appropriate response pattern is activated at all intersections

End of Congestion

 After 20 minutes, congestion begins to subside at the sensors within the control area

End of Response

• Within 5 minutes, all intersections are once again running free

Some Current and Planned Deployments

- Region of Halifax One control area (7 intersections) currently in operation with more detectorized areas in the process of "learning" traffic conditions. Halifax and Parsons are currently reviewing Halifax' operational experience with the system for a future presentation (stay tuned).
- City of Mississauga Two adjacent control areas (7 and 6 intersections) with detector installation currently in progress.
- Macau (China) Two crossing control areas (7 and 3 intersections) with detector technology evaluation and selection currently underway

Takeaways

- "Intelligent Response" self-calibrates by continuously relearning baseline traffic conditions as they evolve over time
- The system uses simulated reasoning (AI) to select signal timing patterns in response to non-recurrent congestion
- The form of AI used results in decisions that are fully explainable and auditable
- By using both volume and occupancy to identify congestion, the system manages feedback in a stable manner
- The system can respond by activating a new pattern or by extending the existing TOD pattern in response to conditions
- System is currently in operation at several control areas in the Region of Halifax, with new deployments underway in the City of Mississauga and in Macau (China).

Acknowledgements

• Taso Koutroulakis, P. Eng., PTOE, Manager, Traffic Management, Halifax

Thank You

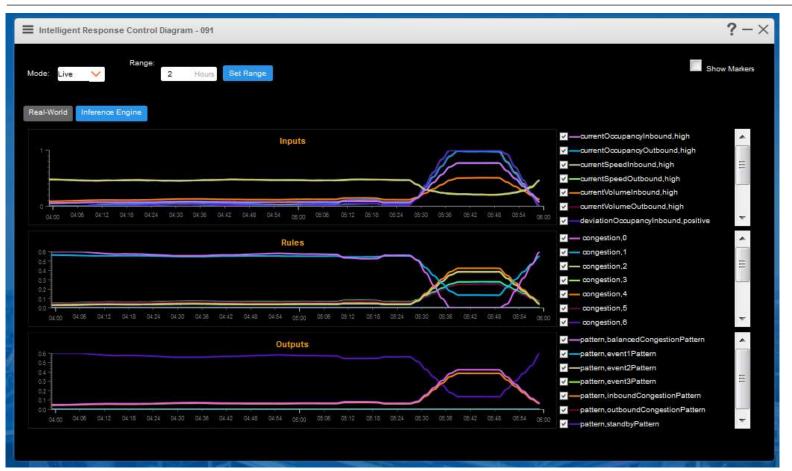
- Closing Remarks
- Questions

Input Ranges

currentOccupancyOutbound					
0.000	37.385		50.000 🗘 🗘		
		•			
• • • • • • • • • • • • • • • • • • •					
μ(x)=0.748/high					

- The response to the numeric input varies within the specified range
- In this example, we have tuned "currentOccupancyOutbound is high" to affect no response (0.0) at or below an occupancy of zero, and a maximum response (1.0) at or above an occupancy of 50%
- All of the input ranges can be likewise tuned so that the system is responsive to each measurement in the proper range

Control Outputs


 The selected pattern number is applied to the controller unit once the persistence and minimum activation time constraints have been met

Sidebar – Kinds of Artificial Intelligence

	Symbolic	Statistical
Focus:	Reasoning	Pattern recognition
Knowledge Representation:	Expert-defined model (rule base, simulation, etc.)	Learned coefficients within a mathematical process
Knowledge Definition:	Manual calibration	Automated learning from a large data set
Explainable Outcomes:	Yes	No
Pitfalls:	Inappropriate level of detail in model, poor calibration	Insufficient training data, overfitting
Techniques:	Expert systems, fuzzy logic, inference, dynamic programming, hill climbing	Regression, Markov Chain, Neural Networks ("deep learning")
Computations:	Low - Moderate	Moderate - Very High
Applications:	diagnostics, decision support, translation, knowledge discovery, control systems	image recognition, speech recognition, traffic prediction, autonomous vehicles

Auditing

• At any time in the future, we can return to the response and review the reasoning behind the pattern activation